
Rationale for a Metalevel Collaborative Design Environment
Phyo Kyaw and Cornelia Boldyre�
Department of Computer Science,

University of Durham,U.K.
phyo.kyaw@dur.ac.uk

3rd June 2003

Abstract
This paper describes a framework that provides an
evolutionary approach for the development of soft-
ware engineering design and the software development
process in general. The approach explores a way of
recording design decisions and rationale to capture
how the software designs evolve during the develop-
ment process by applying the concept of a matrix-
based design space in a collaborative environment. It
enforces the separation of concerns for various arte-
facts that are produced and maintained by the de-
velopment team. It also presents a framework for
the environment that allows developers to share arte-
facts and related information about the artefacts as
a shared development knowledge. This paper is ap-
plicable for all software developers and organisations
whose research areas are in the context of collabora-
tive software engineering and traceability of the de-
sign.

1 Introduction
Software engineering involves a variety of artefacts,
including requirement speci�cations, various compo-
nents, documentation, development process and prac-
tise models, development team's meeting minutes, ar-
chitectural models, test cases, etc. It has been well
established in the literature that the traceability plays
a major role in software development to achieve qual-
ity and maintainability [9, 3, 14]. One way to achieve
traceability is to record all of the information about
the artefacts that arises during their development in
a systematic way, structuring it into a network of
relationships that makes it intelligible to the design
team and to any future developers. Such informa-

tion is referred to as meta-information of the arte-
facts. Through the systematic structures employed,
it is possible to present this information from various
view points at di�erent levels of abstraction. Cur-
rently, in most software development projects, docu-
mentation only goes as far as various speci�cations,
designs, architectural diagrams, API descriptions and
source code modules. There is no explicit recording of
the design rationale behind the individual design deci-
sions which take place during the process of produc-
ing the various documented artefacts. Most impor-
tantly decisions made during informal communication
amongst developers often go unrecorded. For exam-
ple, the use of eXtreme Programming (XP) practise
requires all members of the team to be involved in the
development of test cases and corresponding code [1].
In this case, their test cases and source code are the
primary sources for recovering and understanding the
design rationale.
This paper describes an collaborative environment

to support software development. It is based on the
concept of matrix-based design spaces [4]. This con-
cept can be used to record various aspects of the de-
sign and development of software artefacts. It pro-
vides an environment to support the collaboration
within the development team by presenting the re-
lationships amongst the artefacts. Developing such
a design environment is the aim of our Collaborative
Determination, Elaboration and Evolution of Design
Spaces (CoDEEDS) project. The main objective of
this project is to provide an environment that allows
developers to determine, elaborate, and evolve such
design spaces, clearly identifying all of the design pa-
rameters and design constraints that are applicable in
a particular development. Furthermore to facilitate
constraint checking, as well as to tailor the process of

1

decision making for the development of software sys-
tems, the environment must incorporate knowledge
support.

2 Collaborative software devel-
opment and tools

The generation of software artefacts and the types of
artefacts produced are dependent on the software de-
velopment processes and methods employed in prac-
tice. The team may follow a detailed process model
such as the Rational Uni�ed Process (RUP) [10] and
develop a number of UML models of the system, or
the team may follow the well de�ned less formal prac-
tises of XP and produce test cases and source code.
All the artefacts are updated, shared, reused, and
re�ned as the development evolves. Collaboration
amongst developers may be formal (such as formal
assessment or code review meetings) as well as in-
formal (such as co�ee room chats), during the de-
velopment of the various artefacts. However as the
emergence of global distributed developments [6], the
collaborative processes may be applied using Com-
puter Supported Cooperative Work (CSCW) based
tools, such as groupware tools, visual workspaces,
and video conferencing technologies. However, these
tools only provide facilities for general collaboration
in an informal way, such as chat, mailing list, etc. On
the other hand, there are various team-based features
provided by tools such as Rational Rose and Visual
Age that facilitate model and design integration and
con�guration management of models [16]. Figure 1
shows the �ve aspects of software development that
the CoDEEDS framework is focused on. The main
aim is not to replace nor to integrate directly with
various development tools, but to capture the arte-
facts and the traceability information that arises dur-
ing development and systematically record this with
design spaces.
When an artefact, such as a conceptual model of

the system, is produced, there are many di�erent
types of information is related to the artefact. They
can be referred to as the meta-information of the arte-
facts. Some types of meta-information are design de-
cisions and rationales for the objects inside the model,
language information, process information, and sys-
tem constraints. The following CoDEEDS framework
presents an architecture that allows the developers to

CoDEEDS System boundary

Project management /

workflow

Development of

artefacts

Recording of meta-

information

Storing and

retrieving artefacts

Checking

constraints for

artefacts

Apply development

tools (emacs, jbuilder,

rose, etc.)

Engineering of

methods /

processes

Providing artefact

matrix for abstracted

and refined views of

the system

Development

Team

Figure 1: An overview for the use of CoDEEDS

share the artefacts that they produce, record vari-
ous types of meta-information, analyse the recorded
meta-information, and present the related artefacts
in a matrix-based multi-dimensional design space.

3 CoDEEDS framework -
matrix-based design space

The system uses existing heterogenous components
and frameworks to provide a collaborative environ-
ment and a collection of services. Figure 2 shows an
overview of the architecture of the CoDEEDS frame-
work. The main components that form the framework
are as follows.

Artefact Type Library - It contains the default
type hierarchical structure for various classes
of artefacts. It is used to structure the meta-
information when capturing the artefacts and
when presenting the artefact matrices with multi-
dimensional views. The library contains a default
structure of classes. However, it can be rear-
ranged using the artefact type con�gurator. The
six main base classes of the artefact type hierar-
chy are development, system constraints, process,
language, management and collaborative infor-
mation. Although the system constraints class
can be classi�ed under development, it is treated

2

Artefact management system

CoDEEDS web server

CoDEEDS server

Configuration management tools as plug-ins
 Event generator

Web-based

client 1

Web-based

client 2

Web-based

client N

Standalone

client

User proxies
 Collaboration support

Artefact

manager

Synchronous /

Asynchronous

communication

tools

Artefact Type Library

Artefact capture
 Agent-based constraint

checking

Artefact type configurator

….

Artefact matrix

Figure 2: CoDEEDS framework overview

as a special class for performing constraint check-
ing. As we adopted these classes from the OPEN
process framework, a full list of similar classi�-
cations is presented in [8].

Artefact Capture - The Artefact Capture com-
ponent allows the developer to store and re-
trieve artefacts and their meta-information. The
recording of meta-information is done by present-
ing the artefact type structure from the Arte-
fact Type Library and categorising the meta-
information according to the structure. Figure 3
shows how the artefact data is wrapped with its
meta-information before storing in the Artefact
Management System using the Artefact Man-
ager. The Artefact Capture component is not de-
signed to integrated with any development, mod-
elling nor groupware tools. However the compo-
nent is designed to provide a non-invasive record-
ing facility to instrument the collaborative soft-
ware development process.

Artefact Management System - The Artefact
Management System is an another core compo-
nent of the framework. Currently the OSCAR

Artefact Data

(code, UML, etc.)

CM Info

(version, branch, etc.)

Development and

design Info

Relationships

(types, artefact IDs,

etc)

Workflow, Process,

Language,

and Project Info

Figure 3: An overview of CoDEEDS artefact

artefact management system is applied in the
framework [5]. It encapsulates di�erent con�gu-
ration management systems as plug-ins for stor-
ing artefacts. In OSCAR, an artefact is referred
to as "active artefact". This means it has the
awareness of its own creation, modi�cation and
can generate events to be consumed by any mon-
itoring tasks. The OSCAR is used as an artefact
repository within the CoDEEDS framework.For
more information about the OSCAR, the reader
is referred to [5].

Artefact Matrix - The Artefact Matrix component
provides a multi-dimensional views of the arte-
facts related to a system. In other words, it al-
lows the developers with di�erent roles to view

3

the system with a collect level of abstraction. We
adopted the concept of design space, which has
been applied to di�erent domain areas, including
HCI and requirement engineering [2, 13, 12]. As
a default view, the artefacts are categorised into
three main design spaces covering the static i.e.
logical view, the dynamic i.e. behavioral view,
and the operational i.e. deployment view of the
software system. Figure 4 shows a dimension of a
matrix-based design space. Accordingly, the cell
linking a particular row and column will point
to another view of the matrix, showing more de-
tailed about a particular artefact and a system
constraint.

Agent-based Constraint Checking - One of the
main features provided by CoDEEDS framework
is semi-automatic constraint checking, if not au-
tomatic. In a software development process, an
artefact, such as a conceptual model of a sys-
tem, may be produced and maintained by a de-
veloper. When the model is changed, it may also
change di�erent constraints imposed to other re-
lated artefacts produced by other developers as
well as the development of the system as a whole.
A constraint can be a functional aspect, such as
the data entry model, or it can be a system aspect
(non-functional aspect), such as security model
of the system.
One of the design choices to accomplish the
constraint checking is to monitor the meta-
information when the artefacts are created or
changed. This can be done using an event mon-
itor component. However the framework uses
agent-based approach to monitor various con-
straints of the artefacts. The main reason for
applying agent-based approach is provide an in-
telligent way of monitoring di�erent aspects of
the artefacts by adding rules to the agents. The
agent-based monitoring is attached to the Arte-
fact Matrix. Therefore an agent can be assigned
to a particular row or column of the matrix. Sim-
ilarly, the agent can also be assigned to a row, a
collection of rows or a cell linking a row and a
column.

The components described above are the core com-
ponents of the framework. However as shown in Fig-
ure 2, there are also collaboration support and user
proxy components. The former provides a collection

of groupware facilities, such as mailling list, and chat.
In this way, the developers may use integrated group-
ware facilities as well as external tools. In any case,
the recording is done via the Artefact Capture compo-
nent. The later is used to provide user proxy objects
to each user to monitor the user's state and activities.
The CoDEEDS server integrates all the above com-
ponents for facilitating services to stand-alone and
web-based clients. As an overview the CoDEEDS
server provides a framework of matrix-based design
spaces realised as a metalevel collaborative design en-
vironment. The design environment allows software
developers to share information and work together
to improve the quality, traceability and long-term
maintainability of their software systems. The fol-
lowing section addresses an example to illustrate how
the framework can be applied when creating software
artefacts during the development.

4 A simple example to address
the use of CoDEEDS frame-
work

The following scenario describes a process of collab-
orative software development focusing on producing
software artefacts. Figure 5 shows a simple collab-
orative process. At the begin of a project, the de-
velopment team may perform management and pro-
cess tasks, thus producing management and process
types of artefacts. The team may then select the RUP
as a process for the development and, accordingly,
produce UML modelling diagrams to capture various
views of the system.
As shown in Figure 5 (task 1), as a part of the

process, a developer (A) with the architect role may
produce two modelling diagrams, namely, the concep-
tual model and the use-case model. Then the devel-
oper may store in a datastore. To this end, there
are many di�erent types of meta-information related
to these two artefacts. They can be related directly
or indirectly. The meta-information includes the pro-
�les of modelling language, process, design, decisions
and rationale, views of the system, and system con-
straints for these artefacts. At this stage, some types
of meta-information may be recorded in the develop-
ment or modelling tools, some may be recorded as
design documents. However, some types of meta-
information such as design decisions and rationales

4

Figure 4: A sample artefact matrix

{ 1 }

{ 2 }

{ 3 }

{N} - a sample task

Figure 5: An overview of a sample process

may not be explicitly recorded. In such case, the
CoDEEDS framework can be applied. The developer
can may use the stand-alone or web-based client of the
CoDEEDS framework to store the conceptual model
as an artefact. The Artefact Capture component from
the server side accepts the model as a �le or collection
of �les and passes to the Artefact Management Sys-
tem to be stored in a con�guration management sys-
tem. Through the client, the Artefact Capture com-
ponent presents a structure of the meta-information
to be �lled in, based on the data obtained from the
Artefact Type Library.
As the development continues, the other two devel-

opers (B and C) with the programmer role may pro-
duce component models, as shown in Figure 5 (task
2). These component model artefacts realise all or

part of the functionality addressed in the conceptual
model artefacts. At this stage, these two develop-
ers require the understanding of all di�erent types
of meta-information related to the conceptual model
artefact. The developers (B and C) may use the Arte-
fact Matrix to view various aspects of the system, as
shown in Figure 4.
The developers (A, B and C) may perform a col-

laborative process to resolve various issues about the
artefacts. The collaboration may be made through
meetings or by applying various groupware tools. In
any case, a new type of meta-information is emerged
for the artefacts. It is a collective design decisions
and rationales resulting from the collaborative pro-
cess. This information may be appended to the arte-
fact's meta-information using the Artefact Capture
component.
As shown in Figure 5 (task 3), the developer (A)

may then change the conceptual model as the design
evolves. The developer may add additional design de-
cisions and rationale of the changes and appended to
the meta-information of the artefact. Figure 6 shows
a simple example of the decisions and rationale can
be recorded against the system constraints. Artefact
Constraint checking may monitor the events, anal-
yse the meta-information and notify the information
about the constraints to other developers.
The various types of meta-information presented

above are important in two di�erent aspects of the
development. Firstly, the developers may require
such meta-information as knowledge when reusing the
artefacts in di�erent domains or projects. Secondly,
when artefacts are shared amongst the developers, the
information provides better feedback and understand-

5

Figure 6: An recording of a set of decisions and ra-
tionale against system constraints

ing of how artefacts are evolved during the develop-
ment.
However currently available tools and technolo-

gies do not provide an integrated environment that
shows all the meta-information presented above in a
structured way. T CoDEEDS framework provides
an integrated collaborative environment, which al-
lows the developers to share artefacts and their meta-
information.
We are currently implementing a framework as an

open-source CoDEEDS tool. It uses various exist-
ing heterogenous components. We have reached to
the stage where we can capture artefacts and their
meta-information and structuring the Artefact Type
Library to be presented as matrix-based design space.
At this stage, we are implementing the functionalities
for constraint checking and other necessary services
such as groupware support and shared workspace.

5 Related Work and evaluation
The concept of design space involving the applica-
tion of a matrix-based approach to record and anal-
yse design decisions has been presented in the �eld of
HCI [13] and software structures in[12].
As we discussed in the case study, currently avail-

able groupware tools such as [15, 7] focus on providing
generic groupware features for development teams.
On the other hand, there are also projects that fo-
cus on traceability and change management among
all project elements, such as the approach adapted
in the OPHELIA project [11]. Their approach fo-
cuses on integrating products resulting from vari-
ous development tools and performing traceability as
well as automatic noti�cations about changes to the
products. However, our main concern is providing
high-level collaborative support by recording meta-
information and presenting it with artefact matrices.

When designing a new application, the determina-
tion of relevant design methods, design parameters
and constraints is important to all members of the
development team. In this paper, we have presented
a way of recording such important information in a
collaborative environment. The automatic constraint
checking can also be performed. However, since we
do not analyse the actual data content of the arte-
facts, the richness of the meta-information is limited
to the data provided by the developers and the tools.
The CoDEEDS framework do not provide facilities to
directly apply notes or documents inside the devel-
opment or modelling tool as the meta-information,
as it does not integrate with any development tool.
However it provides a structure to import informa-
tion from various tools.
One of the open issues of tool-based development,

such as the CoDEEDS, is the lack of hard evidence
for success. As with many other projects that are
based on providing tool support, detailed evaluation
of the tool can only be made after the release of the
tool. We are planning to release the �rst version of
the tool in very near future.

6 Conclusion
As an overview, we have described a collaborative
environment with a design recording facility to as-
sist software development teams engaged in collab-
orative software development. The framework also
addresses the use of various views that separate var-
ious concerns during the design. The research of the
CoDEEDS project is to provide a closer relationship
amongst the CSCW-based research on collaboration
environment, traceability of the design, and evolution
of design spaces.

References
[1] Ambler, S. W. Agile modeling. Wiley, New

York, 2002.

[2] Baum, L., Becker, M., Geyer, L., and
Molter, G. Mapping requirements to reusable
components using design spaces. In ICRE
(2000), pp. 159�167.

[3] Boldyreff, C., Burd, E., Hather, R.,
Munro, M., and Younger, E.Greater under-

6

standing through maintainer driven traceabilit.
IEEE Computer Press (1996), 100�106.

[4] Boldyreff, C., Kyaw, P., Nutter, D., and
Rank, S. Architectural framework for a collab-
orative design environment. In Proceedings of
Second ASERC Workshop on Software Architec-
ture (Ban�, Canada, 2003).

[5] Boldyreff, C., Nutter, D., and Rank,
S. Architectural requirements for an open
source component and artefact repository system
within GENESIS. In Proceedings of the Open
Source Software Development Workshop (New-
castle, UK, Feb. 2002), C. Gacek and B. Arief,
Eds., pp. 176�196.

[6] Braun, A., Dutoit, A. H., and Brugge, B.
A software architecture for knowledge acquisi-
tion and retrieval for global distributed teams.
In Proceedings of the 3rd International Workshop
on Global Software Development (Portland, Ore-
gon, 2003).

[7] Fanderclai, T. L. Community building in
CVW. ACM SIGGROUP Bulletin 19, 3 (1998),
18�21.

[8] Firesmith, D. G., and Henderson-Sellers,
B. The OPEN Process Framework. The OPEN
Series. Addison Wesley, 2002.

[9] Gotel, O., and Finkelstein, A. W. An
analysis of the requirements tracebility problem.
In Proceedings of the International Conference
on Requirements Engineering (Colorado Springs,
Colorado, 1994).

[10] Jacobson, I., Booch, G., and Rumbaugh,
J. The Uni�ed Software Development Process.
Object Technology Series. Addison-Wesley, 1999.

[11] Kowalczykiewicz, K., and Weiss, D.Trace-
ability: Taming uncontrolled change in software
development, 2002.

[12] Lane, T. G. Studying software architecture
through design spaces and rules. Tech. Rep.
CMU/SEI-90-TR-18, November 1990.

[13] Maclean, A., and McKerlie, D. De-
sign space analysis and use representations. In
Scenario-based design: envisioning work and

technology in system development (1995), John
Wiley and Sons, Inc., pp. 183�207.

[14] Olsson, T., and Grundy, J. Supporting
traceability and inconsistency management be-
tween software artefacts. In Proceedings of
the 2002 IASTED International Conference on
Software Engineering and Applications (Boston,
USA, 2002).

[15] phpGroupware. phpgroupware home page,
2002. Avaliable at www.phpgroupware.org.

[16] Rational Rose. Rose visual modelling tool,
2002. Avaliable at www.rational.com.

7

